Recent Developments in the Chemical Recycling of PET
نویسندگان
چکیده
Poly(ethylene terephthalate), more commonly known as PET in the packaging industry and generally referred to as ‘polyester‘ in the textile industry, is an indispensable material with immense applications owing to its excellent physical and chemical properties. On the other hand, due to its increasing consumption and non-biodegradability, PET waste disposal has created serious environmental and economic concerns. Thus, management of PET waste has become an important social issue. In view of the increasing environmental awareness in the society, recycling remains the most viable option for the treatment of waste PET. Among the various methods of PET recycling (primary or ‘in-plant’, secondary or mechanical, tertiary or chemical, quaternary involving energy recovery), only chemical recycling conforms to the principles of sustainable development because it leads to the formation of the raw materials from which PET is originally made. Chemical recycling utilizes processes such as hydrolysis, methanolysis, glycloysis, ammonolysis and aminolysis. In a large collection of researches for the chemical recycling of PET, the primary objective is to increase the monomer yield while reducing the reaction time and/or carrying out the reaction under mild conditions. Continuous efforts of researchers have brought great improvements in the chemical recycling processes. This paper reviews methods for the chemical recycling of PET with special emphasis on glycolytic depolymerization with ethylene glycol. It covers the researches, including the works by the authors, on various processes and introduces recent developments to increase monomer yield. Processes including suband supercritical, catalytic, and microwave-assisted depolymerization are discussed. This paper also presents the impact of the new technologies such as nanotechnology on the future developments in the chemical recycling of PET.
منابع مشابه
PET vs. SPECT: in the context of ongoing developments
This paper intends to compare the abilities of the two major imaging modalities in nuclear medicine imaging: Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT). The motivations are many-fold: (i) To gain a better understanding of the strengths and limitations of the two imaging modalities in the context of recent and ongoing developments in hardware ...
متن کاملPreparation and Characterization of Diols and Polyols Based on Aminolysisof Poly (ethylene terephthalate) Wastes with Alkanolamines
The Plastic Waste phenomenon, which is the result of increasing poly (ethylene terephthalate) production and the wide range PET consumption in different industries, caused one of the major environmental concerns. Therefore,many different ways have been studied and applied for chemical recycling of PET. One of the most important ways to depolymerize poly (ethylene terephthalate) is the aminolysi...
متن کاملThe Glycolysis of Poly (ethylene terephthalate) Waste:Recovery of Terephthalic Acid by Magnetic FeO@APTS Nanoparticle
In this research, the chemical recycling of terephthalic acid from PET waste by using nano Fe3O4@Py-APTS as solid support was reported. The performance of organically modified nano magnetic was examined in detail and the results were compared with unsupported reactions as the model. By using the solid support, the required time for complete glycolysis, consumption of solvent and catalyst, decre...
متن کاملRecent Developments in Fouling Minimization of Membranes Modifed with Silver Nanoparticles
When incorporated in membranes, Ag0 nanoparticles are effective antifouling and antibacterial agents, arising from the presence of Ag+ ions either in solution or adsorbed onto nanoparticles. A vari...
متن کاملSynthesis and characterization of the electrospun fibers prepared from waste polymeric materials
Recently, the demands for the production of many different types of plastic wastes are greatly growing that subsequently, lead to the serious challenges in environmental considerations. Since, these materials are rarely resolved by microorganisms, hence, their recycling to the useful materials is crucial. In the present study, we used a solution electrospinning technique to synthesize nano/micr...
متن کامل